The scientists have published their research in the International Journal of Molecular Genetics. Their work shows how the gene therapy conferred significant benefit in animal models, and in human cells derived from people with glaucoma.
Specifically, the therapy protected key “retinal ganglion cells” (RGCs) that are important in vision and improved their function in an animal model of glaucoma. In human retinal cells, delivery of the gene therapy increased oxygen consumption and ATP (energy) production, indicating enhanced cell performance.
First author of the published research article, Dr. Sophia Millington-Ward, Research Fellow in Trinity’s School of Genetics and Microbiology, said, “Glaucoma is a complex group of optic neuropathies and a leading cause of blindness. In Europe, roughly 1 in 30 people aged between 40 and 80 years have glaucoma, and that rises to 1 in 10 in persons over 90, so this is a really common condition that badly needs new treatment options.”
“It is a multifactorial condition with many different risk factors, which adds to the complexity of treating it. Current glaucoma treatments focus on the use of topical eye drops, surgery, or laser therapy. However, the outcomes are variable, with some patients not responding and/or suffering serious side effects.”
“The need for better treatment options has inspired and motivated us to continue developing gene therapies, and we are delighted with the promise it is showing.”
The new gene therapy uses an approved virus to deliver an enhanced gene (eNdi1) developed by the Trinity team. The therapy was designed with the aim of boosting mitochondrial activity (mitochondria are “cellular energy generators” responsible for ATP production) and reducing damaging reactive oxygen species.
Jane Farrar, Research Professor in Trinity’s School of Genetics and Microbiology at Trinity, is the senior author of the published research article. She added, “Developing broadly applicable gene therapies for large numbers of patients is particularly important, given the high development costs associated with each therapy—and here we have highlighted this therapy has real potential for boosting mitochondrial function in glaucoma.”
Translation of the studies towards the clinic and patients, while involving many additional steps, is the next focus.
Based on these and other foundational achievements, the Trinity team—together with Loretto Callaghan—has recently founded Vzarii Therapeutics to expedite future development of dry AMD and glaucoma gene therapies for human clinical trials.
Check out our AAV CDMO service to expedite your gene therapy research
PackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span from vector design and construction to AAV, lentivirus, and mRNA services. With a sharp focus on early-stage drug discovery, preclinical development, and cell and gene therapy trials, we deliver cost-effective, dependable, and scalable production solutions. Leveraging our groundbreaking π-alpha 293 AAV high-yield platform, we amplify AAV production by up to 10-fold, yielding up to 1e+17vg per batch to meet diverse commercial and clinical project needs. Moreover, our tailored mRNA and LNP products and services cater to every stage of drug and vaccine development, from research to GMP production, providing a seamless, end-to-end solution.
Related News
[2024/12/20] Gene and Cell Therapy- weekly digest from PackGene
FeaturedNewsArticlesPackGene's NewsletterReceive the latest news and insights to your inbox.About PackGenePackGene Biotech is a world-leading CRO and CDMO, excelling in AAV vectors, mRNA, plasmid DNA, and lentiviral vector solutions. Our comprehensive offerings span...
Sangamo and Astellas Collaborate to Advance Neurological Gene Therapies Using AAV Capsid Technology
Sangamo Therapeutics, Inc. (Nasdaq: SGMO), a leader in genomic medicine, and Astellas Pharma Inc. (TSE: 4503), a global innovator in life sciences, have partnered under a new license agreement. This collaboration centers around Sangamo’s cutting-edge neurotropic AAV...
Inceptor Bio and GRIT Bio Announce Strategic Partnership to Advance IB-T101, a Next-Generation Solid Tumor CAR-T Utilizing the OUTLAST™ Platform
SHANGHAI and MORRISVILLE, N.C., Dec. 18, 2024 /PRNewswire/ -- Inceptor Bio, a leading innovator in cell therapy, and GRIT Bio, a clinical-stage immunotherapy developer, today announced a strategic partnership to advance IB-T101, a potentially best-in-class CAR-T...
Proof-of-concept study bioengineers therapeutics for improved cancer treatment
Credit: Pixabay/CC0 Public DomainA team of Children's Medical Research Institute (CMRI) scientists has identified a new method for producing a therapeutic product that has the potential to improve the treatment of cancer. The work by Associate Professor Leszek...
Related Services
AAV Packaging Services
READ MORE
Off-the-Shelf AAV Products
READ MORE